เน็ตแอพ แนะ 3 แนวทางด้านใช้ข้อมูล (Data) เพื่อการวิเคราะห์ (Analysis) และการเรียนรู้ของเครื่องจักร (Machine Learning) เพื่อเตรียมพร้อม ประเทศไทย ต่อการรับมือช่วงฤดูมรสุม หลังทั่วโลกเริ่มเผชิญภัยธรรมชาติเพิ่มขึ้น…
ขับเคลื่อนองค์กรเผชิญภัยธรรมชาติด้วย Data
ตั้งแต่เหตุการณ์สึนามิครั้งใหญ่ที่ส่งผลกระทบต่
โดยมี 12 รัฐ ที่ได้รับความเสียหาย เป็นจำนวนเงินกว่า 1.5 พันล้านริงกิต รวมถึงผู้อพยพกว่า 200,000 คนที่ต้องเผชิญกับภาวะวิกฤตในครั้งนี้ สำหรับประเทศไทย เหตุการณ์สึนามิในปี 2547 ได้พรากผู้คนไปกว่า 10,000 ราย จาก 6 จังหวัดตามแนวชายฝั่งทะเลอันดามันทางตอนใต้ของประเทศไทย
ทั้งนี้ สำนักงานคณะกรรมการพัฒนาการเศรษฐกิจและสังคมแห่งชาติระบุว่า เหตุการณ์ภัยพิบัติในครั้งนี้ส่งผลให้เกิดความเสียหายต่อภาคเศรษฐกิจของประเทศไทยราว 35,000 ล้านบาท ทั้งสองเหตุการณ์ดังกล่าว เกิดขึ้นในช่วงฤดูมรสุมตะวันออกเฉียงเหนือ (พฤศจิกายนถึงมีนาคม)
แม้ว่าจะเป็นเหตุการณ์ที่เกิดขึ้นเป็นประจำทุกปี ทั้งในประเทศไทย และเอเชียตะวันออกเฉียงใต้ แต่สภาพอากาศที่รุนแรงซึ่งเกิดจากการเปลี่ยนแปลงของสภาพภูมิอากาศ ก่อให้เกิดฤดูมรสุมที่ส่งผลกระทบร้ายแรงต่อทั้งภาคเศรษฐกิจและผู้คนจำนวนมหาศาลในช่วงทศวรรษที่ผ่านมา
ดังนั้น รัฐบาลควรมีการวางแผนและเตรียมความพร้อมอย่างไร เพื่อรับมือต่อภัยพิบัติและลดผลกระทบทางการเงินและเศรษฐกิจ และที่สำคัญที่สุด เพื่อความปลอดภัยของประชาชน แนวทางการรับมือที่สำคัญ คือ การพยากรณ์สภาพภูมิอากาศที่มีประสิทธิภาพและแม่นยำมากขึ้น เน็ตแอพ ขอเสนอ 3 แนวทางหลัก ดังนี้
ยกระดับ Machine Learning มาใช้ในการพยากรณ์อากาศ
เครื่องวัดสภาพอากาศคือหัวใจสำคัญในการคาดการณ์และพยากรณ์ที่แม่นยำ ซูเปอร์คอมพิวเตอร์ได้มีบทบาทสำคัญในการพัฒนาออกแบบรูปแบบการพยากรณ์มาตั้งแต่ในยุค 1950s จนกระทั่งวันนี้ รูปแบบการพยากรณ์สภาพอากาศยังคงเป็นหลักสำคัญในการสร้างข้อมูลใหม่
โดยอ้างอิงจากข้อมูลในอดีต และพัฒนาการวิเคราะห์ในอนาคตให้มีความถูกต้องแม่นยำมากขึ้น ซึ่งปัจจุบัน Machine Learning (ML) ถูกนำมาใช้เพื่อการคาดการณ์พยากรณ์ที่แม่นยำมากขึ้น และลดปริมาณการใช้งานที่มากเกินไปของรูปแบบการพยากรณ์สภาพอากาศแบบเดิมที่มีตัวแปรสับสนวุ่นวาย
และเสี่ยงต่อความไม่เสถียร สำนักงานบริหารภาคพื้นทะเลและบรรยากาศแห่งสหรัฐอเมริกา (National Oceanic and Atmospheric Administration หรือ NOAA) ได้นำ Machine Learningและ เทคนิคต่างๆของ AI ประกอบกับความเข้าใจทางกายภาพของสิ่งแวดล้อม
เพื่อใช้ในการปรับปรุงการพยากรณ์มากขึ้น จึงสามารถเพิ่มประสิทธิภาพความแม่นยำในการพยากรณ์สภาพอากาศที่มีผลกระทบรุนแรงต่างๆ เช่น พายุฝนฟ้าคะนองรุนแรง, พายุทอร์นาโด และ พายุเฮอริเคน ขณะที่ ในเอเชียตะวันออกเฉียงใต้ มีการพัฒนารูปแบบการพยากรณ์สภาพอากาศ
ให้นักวิทยาศาสตร์สามารถคำนวณได้ว่าช่วงเริ่มต้นฤดูมรสุมจะมาช้ากว่าปกติได้ถึง 15วันในช่วงหลายทศวรรษที่ผ่านมา ทั้งยังช่วยให้มีความรู้และความเข้าใจเพิ่มเติมเกี่ยวกับช่วงเวลาที่จะเกิดขึ้นของสภาพอากาศที่รุนแรงในช่วงฤดูมรสุม
เช่น ประเทศที่ใกล้เส้นศูนย์สูตร อย่างมาเลเซีย และ สิงคโปร์ ที่ประสบปัญหาฝนตกและภัยแล้งในรอบ 10 ปี ในขณะที่ประเทศอื่นๆ ในตอนเหนือ เช่น ฟิลิปปินส์ และ ไทย จะมีโอกาสประสบปัญหาในรอบ 30 ปี ซึ่งด้วย ความแม่นยำ และความเสถียรที่เพิ่มมากขึ้นของ Machine Learning
จะช่วยให้หน่วยงานรัฐบาลในประเทศแถบเอเชียตะวันออกเฉียงใต้ เตรียมความพร้อมรับมือกับภัยพิบัติร่วมกันได้ดีมากยิ่งขึ้น และยังช่วยเพิ่มประสิทธิภาพในการลงทุนด้านโครงสร้างพื้นฐาน และเทคโนโลยีเพื่อลดความเสี่ยงอีกด้วย
เพิ่มประสิทธิภาพการใช้ข้อมู ลจำนวนมหาศาล เพื่อข้อมูลเชิงลึกที่รวดเร็วยิ่ งขึ้น แบบเรียลไทม์
วันนี้ขอบเขตของข้อมูลที่เกี่ยวกับสภาพอากาศมีอยู่เป็นจำนวนมาก ปัจจุบันมีดาวเทียมมากกว่าหนึ่งพันดวงในอวกาศที่ให้ข้อมูลมากมายเกี่ยวกับรูปแบบของเมฆ ลม อุณหภูมิ และอื่นๆ อีกมากมาย ดาวเทียมเหล่านี้เป็นเพียงส่วนเล็กๆ ของการผลิตข้อมูลที่เกิดขึ้นเท่านั้น
ยังมีสถานีรายงานสภาพอากาศที่มีอยู่ทั่วโลกที่เป็นของรัฐบาลและเอกชนอีกหลายร้อยพันสถานี ที่รวบรวมข้อมูลแบบเรียลไทม์อย่างต่อเนื่อง นอกจากนี้ ความต้องการด้านโครงสร้างพื้นฐานก็มีเพิ่มมากขึ้น เพื่อการขนส่ง จัดการ และจัดเก็บข้อมูล ที่ต้องอาศัยการคำนวณที่มีพลังประสิทธิภาพสูงสำหรับกระบวนการดังกล่าว
โดยข้อมูลมหาศาลเหล่านี้สามารถเพิ่มประสิทธิภาพในการอัปเดตแบบเรียลไทม์ หรือ ปรับปรุงระบบเตือนภัยล่วงหน้า ซึ่งจะสามารถช่วยให้หลายๆ ประเทศลดค่าใช้จ่ายจำนวนมาก รวมถึงประหยัดเวลาได้ดีเยี่ยมอีกด้วย ซึ่งในปีที่ผ่านมา กรมอุตุนิยมวิทยาอินเดีย (The Indian Meteorological Department : IMD)
สามารถพัฒนาการพยากรณ์ของฤดูมรสุม จาก 15 วันล่วงหน้า เป็น 3เดือนล่วงหน้า จากการนำรูปแบบการพยากรณ์สภาพอากาศมาใช้ประกอบกับการวิเคราะห์ข้อมูลแบบเรียลไทม์ ช่วยให้เกษตรกรในอินเดียมีเวลามากเพียงพอสำหรับการหว่านเมล็ดพันธุ์ และวางแผนหาช่องทางทรัพยากรชลประธานอื่นๆ
นอกจากนี้ ยังสามารถช่วยให้เจ้าหน้าที่เทศบาลวางแผนการแพร่กระจายของน้ำเพื่อกักเก็บสำหรับการใช้งานในครัวเรือนและอุตสาหกรรมในช่วงฤดูที่ลำบากอีกด้วย จากข้อมูลเหล่านี้ ศูนย์อุตุนิยมวิทยาเอเชียตะวันออกเฉียงใต้ และหน่วยงานที่เกี่ยวข้อง ควรเริ่มใช้ เทคโนโลยี และโซลูชั่นที่จะช่วยให้การประมวลผลข้อมูลด้านสภาพอากาศมีความรวดเร็วยิ่งขึ้น ก่อนที่น้ำท่วมและพายุจากมรสุมจะเกิดขึ้น
นอกจากนี้ การวิเคราะห์ข้อมูลบิ๊กดาต้า ก็เป็นส่วนสำคัญในแผนงานระดับประเทศ ทั้งมาเลเซีย อินโดนีเซีย และ ไทย โดยเฉพาะอย่างยิ่งในโครงการของรัฐบาลและอุตสาหรรมต่างๆ จึงไม่ใช่เรื่องยากที่จะนำเอาหลักการ และการเรียนรู้เดียวกันนี้มาปรับใช้กับการพยากรณ์อากาศในอนาคต
ทั้งนี้ กรมอุตุนิยมวิทยาแห่งประเทศไทยได้มีการลงทุนด้านเทคโนโลยี ที่สามารถพยากรณ์อากาศได้รวดเร็วขึ้นถึง 7 วันล่วงหน้า ทั้งโดยรายเดือนและรายปี รวมทั้งมีการวางกลยุทธ์และจัดทำแผนแม่บทป้องกันและบรรเทาภัยจากคลื่นสึนามิ เพื่อปกป้องดูแลประชาชนจากภัยพิบัติทางธรรมชาติในอนาคตได้ดียิ่งขึ้นอีกด้วย
จากเหตุการณ์พายุปาบึกในช่วงต้นเดือนมกราคมที่ผ่านมา กรมอุตุนิยมวิทยาแห่งประเทศไทยได้รับข้อมูลเกี่ยวกับพายุปาบึกที่กำลังจะมาถึง และมีการเตรียมความพร้อมรับมือล่วงหน้าเพื่อป้องกันความเสี่ยงจากภัยอันตราย ด้วยการตั้งศูนย์ดาต้าเซ็นเตอร์
และการใช้งานแอพพลิเคชั่น WMApp ที่มีความแม่นยำและละเอียดสูง การติดตาม และการคาดการณ์ผลพยากรณ์อากาศจึงประสบผลสำเร็จเป็นอย่างมาก แอพพลิเคชั่น WMApp ได้นำอัลกอริทึม AMP มาใช้ในการพยากรณ์ ซึ่งถือเป็นอัลกอริทึมแรกของโลกที่มีความถูกต้องแม่นยำที่สุด
ข้อมูลดาต้าจากดาวเทียม และอัลกอริทึม AMP ส่งผลให้ WMApp สามารถคาดการณ์พยากรณ์อากาศได้อย่างละเอียดและแม่นยำ ทั้งการระบุตำแหน่งและเวลาที่หยดน้ำฟ้าจะตก ควบคู่กับผลพยากรณ์พายุหมุน (Cyclone) ได้ล่วงหน้า 5.5 วัน ในภูมิภาคเอเชียตะวันออกเฉียงใต้
จากเหตุการณ์ภัยพิบัติสึนามิที่ไม่มีการคาดการณ์และวางแผนตั้งรับอย่างมีประสิทธิภาพ หน่วยงานต่างๆจึงมีแผนการตั้งรับที่มีความพร้อมต่อเหตุการณ์พายุปาบึกมากขึ้น ด้วยเทคโนโลยีในการวิเคราะห์ข้อมูลที่มีประสิทธิภาพดังกล่าว หน่วยงานและภาครัฐสามารถเตือนภัยประชาชนได้ล่วงหน้า
โดยเฉพาะอย่างยิ่งในพื้นที่ที่ได้รับผลกระทบตามแนวชายฝั่งทะเลทางภาคใต้ของประเทศไทย เพื่อเตรียมพร้อมในการอพยพได้ดียิ่งขึ้น จากการรายงานของกรมป้องกันและบรรเทาสาธารณภัยพบว่าประชาชน 34,089 รายได้รับความช่วยเหลือในการอพยพจากพายุปาบึก
รวมถึงศูนย์ประสานงานสำหรับเหตุฉุกเฉินที่ได้จัดเตรียมที่พักและความปลอดภัยสำหรับผู้อพยพกว่า 500 คนในพื้นที่ที่ได้รับผลกระทบ ด้วยข้อได้เปรียบจากเทคโนโลยีด้านข้อมูลดาต้า การรวบรวมข้อมูลดาต้า และการวิเคราะห์อย่างละเอียดแม่นยำ
ส่งผลให้ภาครัฐสามารถวางแผนล่วงหน้าเพื่อป้องกันความเสียหายทางสังคมและเศรษฐกิจ สภาการท่องเที่ยวแห่งประเทศไทย (ททท.) ระบุว่าภัยพิบัติทางธรรมชาติครั้งนี้ไม่ได้ก่อให้เกิดความเสียหายที่รุนแรงต่อภาคการท่องเที่ยว
ขณะที่ทางกระทรวงพลังงานก็มีการประกาศว่าการผลิตปิโตรเลียมของอ่าวไทยไม่ได้รับความเสียหายที่เป็นอันตรายเช่นกัน และยังคงดำเนินการผลิตก๊าซและไฟฟ้าได้อย่างราบรื่น จึงอาจกล่าวได้ว่า ความเสียหายต่างๆอาจเลวร้ายขึ้น หากปราศจากนวัตกรรมด้านเทคโนโลยีและการวิเคราะห์ข้อมูลดาต้าที่แม่นยำ และมีประสิทธิภาพ
การแก้ปัญหาที่สำคัญทางภูมิ ศาสตร์
นอกเหนือจากการจัดการกับผลกระทบที่เกิดขึ้นในฤดูมรสุมแล้ว เทคโนโลยีทางด้านข้อมูลก็สามารถนำมาใช้แก้ปัญหาที่สำคัญทางภูมิศาสตร์ได้อีกด้วย ภาพจากดาวเทียมและภาพเรดาร์ การสำรวจพื้นผิว รวมไปถึงการวัดความกดอากาศ ความเร็วลม การตกตะกอน อุณหภูมิ และความชื้น
ล้วนแล้วแต่ประมวลเป็นผลลัพธ์ที่แสดงให้เห็นถึงความเสียหายทางสภาพอากาศในระยะยาว ที่สามารถนำมาใช้เพื่อการแจ้งนโยบายและการพัฒนาโครงสร้างพื้นฐานได้อีกด้วย เช่น ผลกระทบที่สำคัญมากประการหนึ่งของสึนามิในปี 2547 คือการเซาะและกัดกร่อนของชายฝั่งในประเทศแถบเอเชียตะวันออกเฉียงใต้
เพื่อป้องกันไม่ให้เกิดความเสียหายเพิ่มเติมในอนาคต วิศวกรรมชายฝั่งสามารถใช้ข้อมูลสภาพอากาศทางคลื่นลมไปวิเคราะห์เพื่อรักษาระบบนิเวศทางทะเล และป้องกันชายทะเลจากการถูกกัดเซาะ ด้วยข้อมูลสถิติที่สามารถคาดการณ์ลักษณะของคลื่นลม หรือ ผลกระทบจากอุทกพลศาสตร์
ด้วยประการนี้ วิศวกรสามารถระบุตำแหน่งการก่อสร้างเขื่อนและกำแพงกันคลื่น การขุดทรายและหินออกไป หรือย้ายไปยังตำแหน่งอื่น นอกจากนี้ยังสามารถสร้างเนินทรายเทียม เพื่อรักษาและป้องกันชายฝั่งทะเลที่ถูกกัดเซาะ ทั้งยังอนุรักษ์ชายหาดอันสวยงามของเอเชียตะวันออกเฉียงใต้ เพื่อการท่องเที่ยว และอื่นๆอีกมากมาย
รัฐบาลและภาคเอกชนในภูมิภาคเอเชียตะวันออกเฉียงใต้ ได้มีการจัดสรรการลงทุนหลายพันล้านดอลล่าร์ในด้านการพยากรณ์อากาศเป็นประจำทุกปี ดังนั้น จึงไม่มีภาคเศรษฐกิจใดที่ได้รับผลกระทบจากสภาพอากาศ ทั้งทางตรงและทางอ้อม
แหล่งข้อมูลทางด้านสภาพอากาศที่มีประสิทธิภาพจะยังคงเพิ่มปริมาณมากขึ้นในระยะยาว ประกอบกับความก้าวหน้าทางเทคโนโลยีด้านการวิเคราะห์ AI และ Machine Learning ที่สามารถช่วยให้หน่วยงานภาครัฐและบริษัทต่างๆ นำข้อมูลเหล่านี้มาใช้ได้ดียิ่งขึ้น
เน็ตแอพรู้สึกตื่นเต้นและเป็นเกียรติอย่างมากที่ได้เป็นส่วนหนึ่งของการพัฒนาอย่างต่อเนื่องในครั้งนี้ เน็ตแอพ ออลแฟลช FAS โซลูชั่น สามารถช่วยให้องค์กรต่างๆสามารถเพิ่มประสิทธิภาพที่จำเป็นต่อการเพิ่มความเร็วในการแสดงข้อมูลแบบเสมือนจริงสำหรับนักพยากรณ์อากาศทั่วโลก
และนี่เป็นสิ่งที่เน็ตแอพ ภูมิใจที่จะนำเสนอและมีส่วนร่วมต่อภูมิภาคเอเชียตะวันออกเฉียงใต้ในช่วงเข้าสู่ฤดูมรสุมในปีพ.ศ. 2561 และต่อเนื่องในปีต่อๆไป
ส่วนขยาย
* บทความเรื่องนี้น่าจะเป็นประโยชน์สำหรับการวิเคราะห์ในมุมมองที่น่าสนใจ
** เขียน: ชลัมพ์ ศุภวาที (บรรณาธิการ และผู้สื่อข่าว)
*** ขอขอบคุณภาพบางส่วนจาก www.pexels.com
สามารถกดติดตามข่าวสารและบทความทางด้านเทคโนโลยีของเราได้ที่